
1elektor     02-2012

Microprocessors

Bit-banging the 
FTDI-USB Module
Taking 
advantage of 
little-known 
features of 
FTDI’s USB 
ICs

I’ll begin with the assumption that the 
reader is already somewhat familiar with 
FTDI’s line of easy-to-use USB ICs before 
diving into a couple of their lesser-known 
characteristics. If you haven’t been exposed 
yet to these devices, then I might suggest 
boning up on their capabilities and applica-
tions by reviewing some of my earlier pub-
lications at [1].
Returning to the project, all user software 
will reside in a single application on the host 
PC, and the only ICs used in this design are 
the FT2232H and a couple simple logic 
gates. The FTDI module used is available for 
purchase from DigiKey, Mouser Electronics 
and FTDI’s other distributors.

Bit-bang basics
Once the USB drivers have been loaded 
onto the PC and the port is open to the USB 

module (I used the DLP-USB1232H to make 
assembly easier), the Bit-Bang Mode can 
be enabled. The VC++ source code for this 
project is available for download from the 
project webpage [2]. The D2XX command 
for enabling the Bit-Bang Mode is FT_STA-
TUS status = FT_SetBitMode(m_ftHandle, 
0x01, 0x01) where the handle is returned 
from the call to open the port, the second 
parameter is used to select which of the 
eight data lines are inputs or outputs and 
the third parameter is the initial high/low 
state for the lines configured as outputs.
To read the high/low state of the IO lines 
that are configured as inputs, you would use 
the FT_GetBitMode(m_ftHandle, &data) 
function. The ‘data’ parameter points to 
the current state of the inputs. The impor-
tant thing to keep in mind is that this func-
tion returns the instantaneous state of the 

inputs. Conversely, data that is written to 
the module (using the FT_Write() func-
tion) does not immediately appear on the 
output pins. Instead, the data appears at a 
preselected update rate. If the update (or 
baud) rate is currently set to 9600 and you 
send multiple bytes of data all at once, then 
each byte will automatically appear on the 
output Lines — one at a time — every 104 μs 
until all bytes have been issued.
FTDI’s USB chips have always been able to 
do this. However, with the introduction of 
their new high-speed chips, the update rate 
can now be accurately controlled, and up 
to 8 serial streams can now be generated at 
precise baud rates to drive serial devices at 
stable baud rates. For example, the follow-
ing code will set the update rate to the baud 
rate required by the LCD module and the TTL 
serial interface that I utilized in this project:

By Don Powrie (USA)

This article describes the electrical design and software requirements for a keyless entry control 

panel comprised of a numeric entry pad, an LCD display, relay contacts for unlocking a door and a USB 

interface. Even though this writing will delve into the inner workings of FTDI’s FT2232H and its Bit-Bang 

Mode, understanding the technology will require neither an in-depth knowledge of USB nor the use of a 

microcontroller!



2 02-2012     elektor     

Microprocessors

Note that the serial data can only be clocked 
**out** at a controlled rate. Unfortunately, 
no serial reply data can be clocked back in 
on an input line. You would have to use the 
second channel of the USB IC to receive 
return data; but that’s OK for this project 
since we are only driving an LCD display 
(Crystalfontz America part # CFA632-YFB-
KS) with TTL serial data, and we don’t care 
about return data.

Now that we have eight controllable I/O 
lines that can also clock out TTL serial data 
at controlled baud rates, the platform is set 
for our project.

One 8-Bit variable
The host app keeps track of all inputs and 
outputs, including the serial data stream 
to the LCD, using a single 8-bit variable. To 
read the high/low state of an IO line con-

figured as an input, you would call the FT_
GetBitMode() function and mask the return 
variable so that you can look at a single bit. 
To change the high/low state of an output, 
you should first update the state of the bit in 
question in the 8-bit variable and then write 
out the byte.

So far so good… but what if you want to 
send a serial data stream of 200 bytes on 

div = 0x8c30;//35888 decimal for 19200 baud to LCD with 0.6% error

status = FT_SetDivisor(m_ftHandle, div);

DLP-USB1232H
PORTVCC
EXTVCC

PWREN
SIWUA

MOD1

DB3

GND
DB2 DB4
DB7
DB5

DB0

DB1
RXF
TXE
DB6

GND

USB

17
18

16
15
14
13

10
RD

11
WR

12

1
2
3
4
5
6
7
8
9

+5V

D2

R1

360R

1
2

3

VCC 2

4

1

DATA

GND

U4.A

1

4
5

6

U4.B

1

9
10

8

U4.C

1

13
12

11

U4.D

1
C3

100n R4

10k

Q3

MMBT3904

Q2

MMBT3904 BZ1

+5V

SN74LVC

U2
VCC

GND

2 C

5

1 D

3

4Q
R3

470R

Q1

MMBT3904

Q4

MMBT3904

+5V

RE1
1

12

4

35

9

108

RE1 = DPDT 5V

D1

R2

360R

J1
3
2
1

+5V

C1

100n

LCD1

+5V

S1

1

S2

2

S3

3

S4

4

S5

5

S6

6

S7

7

S8

8

S9

9

S10

ENTER

S11

0

S12

CLEAR

DB2
DB7
DB5
DB3

DB0
DB4
DB1

DB6

DB7

DB5

DB4

DB6

DB0

DB
3

DB
2

DB
1

DB7

DB6

DB5

DB4

1G79

U4
14

7

C2

100n

+5V

110561 - 11

U4 = 74HCT32/SO

LCD Display with TTL serial interface

CFA-632

Figure 1. The DLP-USB1232H module after being suitably bit-banged acts as the controlling element of a code lock.



3elektor     02-2012

Microprocessors

one of the eight I/O lines without affecting 
the other seven? That’s right; you build a 
1,600-byte buffer where each byte has only 
one bit that gets changed according to the 
next bit that is to be clocked out serially at 
the next timer tick, and then you send the 
entire buffer with the FT_Write() function 
all at once. Tedious? Yes! But computers 
love doing tedious tasks, and you only have 
to write the software once for clocking out 
long serial strings.

Hardware
For the following, refer to the electrical 
schematic shown in Figure 1. To scan the 12 
keys in the numeric entry pad using seven of 
the eight available I/O lines; you just drive 
the DB4, DB5, DB6 or DB7 ‘row’ lines low 
(one at a time) and look at the state of the 
three ‘column’ lines connected to DB1, DB2 
and DB3. If a switch is pressed, then the cor-
responding column reports a low level on its 
I/O input line.

DB0 controls whether the host is reading 
the keyboard or driving the LCD display, 
relay or beeper ‘devices’. When DB0 is logic 
High, the OR gates all block data from driv-
ing these devices.
When Low, the keyboard is ignored, and 
data can be written to these devices via DB4 
through DB7.

By now you have probably surmised that 
holding a keyboard switch down will dis-
able the host’s ability to write to one or 
more of the devices. You can get around 

this somewhat by waiting in the host app 
for each key press to be released before 
proceeding. There is almost always a way 
to break a design if you go looking for one, 
but then this system is designed to keep 
someone out of a locked area. If they hold a 
key pressed, then they’re definitely not get-
ting in.

The Gerber files for making the circuit board 
for the project may be downloaded free 
from [2]. The component mounting plan 
appears in Figure 2.

Bit-Bang++…+?
At first I was tempted to present a project 
in which the hardware was comprised of 
eight TTL serial LCD displays all connected 
to a host PC using just the eight I/O lines and 
the Bit-Bang Mode. That would have worked 
fine, but it really didn’t present much of a 
challenge. It would also have been more 
expensive. The Bit-Bang Mode can also be 
used for more mundane tasks like control-

ling eight relays or simple digital I/O. More 
adventurous types can try controlling mul-
tiple SPI devices such as A/D and DACs. 

I guess the primary take-away from this 
article is that you don’t necessarily need a 
microcontroller — and its associated firm-
ware development — in order to use the 
USB interface to control the world around 
you. The Bit-Bang Mode can be a perfect 
low-cost solution for systems requiring only 
host-side software to connect to the envi-
ronment outside of a PC.

(110561)

Internet Links

[1] 	 www.dlpdesign.com/pub.shtml

[2] 	 www.elektor.com/110561

Figure 2. Component side layout of the circuit board designed for the code lock (here at 
80% of its true size). The Gerber files may be downloaded from the Elektor website [2].

Take out a free subscription to E-weekly now
Do you want to stay up to date with electronics and computer technology? 
Always looking for useful hints, tips and interesting offers? Subscribe now to E-weekly, 
the free Elektor Newsletter.

Your benefits: The latest news on electronics in your own mailbox each Friday
  Free access to the News Archive on the Elektor website  

 You’re authorized to post replies and new topics in our forum
Register today on 
www.elektor.com/newsletter 

Advertisement


